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A method is proposed for solving the two-dimensional and axisym-
metric problems of the stationary temperature field of a porous body
through whose pores a coolant flows. The proposed method is used
to solve a number of typical problems associated with the cooling of
porous bodies.

There are many engineering problems involving
flows of gases and incompressible liguids in porous
materials in the presence of large temperature drops
at the boundaries of the flow region. These problems
are primarily connected with atomic and chemical
reactors, blast furnaces, etc. When it is necessary
to provide reliable thermal protection for all or part
of a structure operating under high-temperature con-
ditions, it is quite effective to use porous materials
cooled by a flow of gas or liquid through the pores
to the hot surface. Transpiration cooling is most
frequently used in aircraft and rocket engines, power
engineering equipment, etc.

In the literature the problems of the analytical
determination of the temperature field in the flow
region are usually examined in the one-dimensional
approximation [1-3].

Our object is to obtain an analytical solution for the
steady-state temperature field under conditions of two-
dimensional and axisymmetric flow of a "nonpolytropic"
gas, i.e., a gas flowing at large temperature drops,
an incompressible liquid, whose viscosity depends
on temperature, and a hypothetical coolant, whose
properties are invariant in the range of temperature
variation investigated.

The problem is formulated as follows: a) the flow
takes place in a nondeformable, uniformly porous
medium and obeys the law
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where K is constant for a homogeneous porous me-
dium; b) the temperatures of the porous body and
the coolant are the same at any point of the flow
region (this assumption may be considered justified
if the internal surface of contact between the coolant
and the body is sufficiently large. The results pre-
sented in [4,5] confirm the validity of this assumption);
c¢) in the case of an incompressible liquid we assume
that its heat capacity is constant. When a gas is used
ag the coolant it is assumed that it is a perfect gas
satisfying the Clapeyron equation

P =vyRT.

Then the differential equation for the temperature of
the porous body is written in the following form:

AT—~%lvgradT=o. (2)

The value of A is assumed constant and equal to the
mean value for the fluid and the porous body. Moreover,
T must satisfy the corresponding boundary conditions.
Inthe case of axisymmetric flow it is possible to in-
troduce the stream function V given by the expressions
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Analogous expressions are written for the stream
function in the case of two-dimensional flow.
It is easy to see that the surfaces P = const, V =
= const, and ¢ = const are mutually orthogonal,
Instead of the cylindrical coordinates z, r, and ¢,
we introduce the orthogonal curvilinear coordinates
g =P, g, =V, and q3 = ¢. The Lamé coefficients for
the new variables are determined from the equations
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Using expression (1), we transform Eq. (2) to the
new coordinates:
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where y = u/Kyvh,

Similar calculations with transition to the curvi-
linear orthogonal coordinates P, V can also be made
in the case of the two-dimensional problem. In the
general case instead of Eq. (2) we obtain
C, aT
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In the case of two-dimensional filtration v = 0 (here,.
r plays the role of the x coordinate of the rectangular
Cartesian coordinate system xoy, and z the role of
the y coordinate), while in the axisymmetric problem
v=1,

The solution of Eq. (5) must satisfy the boundary
conditions for T(P,V) corresponding to the starting
conditions for T(x, y) or T(z, T, ®).
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We will consider several special cases of determi-
nation of the temperature field of practical interest,
always assuming that the flow obeys Darcy's law
(n = 0). Inthis case the expression for x simplifies to

N
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Moreover, it is natural to assume that the boundary
of the region in which the temperature distribution is
sought is divided into two parts: a cold part—surface
corresponding to coolant inlet—and a hot part—surface
corresponding to coolant outlet.

1. The temperature and pressure on each of these
parts of the boundary are constant (but different on
each part),

Since 7y is a constant quantity (1ncompress1ble
liquid) or, for a compressible gas, satisfies the
Clapeyron equation, while in both cases y may be
assumed to depend on temperature, for linear flow
x depends only on temperature and pressure:

% =%(P 7).

Therefore, in the given case it is possible to find a
solution for T that depends only on P, Thus, Eq. (5) is
transformed into a second-order ordinary differential
equation in T:
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Integrating (6), we find
ar G,
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Integrating (7), we have
a) for an incompressible liquid (y = const),

g_i‘ﬁ)_ T =P, 8)
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where S = CpyK/A. We can integrate the left side of
expression (8) if we have the relation g = u(T) for the
selected liguid.

b) for a compressible gas the temperature de-
pendence of the gas viscosity can be approximately
determined from the formula
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Substituting in y the value of y from the Clapeyron
equation, together with the expression for u, and
integrating expression (7) for m = 1, we obtain
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where I' = CpKTy/4R A,
The results obtained below remain essentially the
same when the more general law m = 1 is considered.
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In both case a) and case b) the constants of inte-
gration must be selected from the conditions at the
boundary. In the particular case in question these
conditions have the form

P=P,T=Ts
P=P, T=T,

From these conditions we determine the values of
the constants of integration in expressions (8) and (9).

In the flow region T (and hence P) can be deter-
mined as follows. Substituting in (2) the expression (1)
for v and replacing i and v (in the case of a compres-
sible gas) and also P, as indicated above, we obtain a
differential equation for T. Replacing T by the new
variable ® from the expression

B—ST = exp[8], (10)
in the case of an incompressible liguid, and
1—21'CiT == exp (0], (10"

in the case of a compressible gas, we arrive at the
Laplace equation for the function @:

AB =0. {11)

Equation (11) must be solved with the boundary condi-
tions for @ correspending to the starting conditions,
using (10) or (10').

The results obtained can be extended to the case of
arbitrary three-dimensional lirear flow,

2. The pressure and temperature are constant at
the cold surface, variable at the hot surface.

We assume that the coefficients g and v are con-
stant and equal to the mean value of each coefficient
in the given range of temperature variation. This
assumption makes it possible to use the results of the
theory of linear flow, in which it is shown that in
the presence of a steady-state flow regime P(x,y)
is a harmonic function in the region considered [6].
Consequently, we can formulate and solve the Dirichlet
problem for P,

In the case of the two-dimensional problem, taking
the above assumption info account, we write Eq. (5) in
the form
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We introduce the new variables
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In the coordinates P, ¢ Eq. (5) takes the form

T T oT
art oy 1 op (12

where ¢ = CpyK/uX = const,
By means of the substitution

T=Uexp{~—%P}
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Eq. (12) is reduced to the form

U, B
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Here, QF = q¥4.

Let the simply connected flow region be symmetri-
cal with respect to one of the axes, for example, ox,
and let the boundary junction points also be symmetri-
cal with respect to that axis. In this formulation of the
problem the given flow region in the plane xoy will
correspond to an infinite strip R{g)= P = Py, = <
< P < +oo, in the plane POy, since, as the junction point
is approached, the quantity j increases without bound,
taking infinitely large values at these points,

Thus, bearing in mind what was said above, we can
now formulate the boundary value problem as follows:
to find the solution of Eq. (12') within the infinite
strip G: —» < ¥ < +, R{y} < P = P, satisfying the
conditions

P=P, U =0,P=R(®), Uy=0(F, ¢). (13)

Here, R(¥) and &(P, ) are known functions corre-
sponding to those given in the plane xoy.

From considerations of a physical nature, it follows
that the temperature distribution will be symmetrical
about the line y = 0 and consequently (9U/8%)y=¢ = 0.
Moreover, from the same considerations it is obvious
that ag ¢ — £ and U — 0, 8U/MBY — 0.

Boundary value problem {12')—(13) can be reduced
to a variational problem by selecting the functional for
which the given equation would be the Euler equation
and then investigating this functional for the extremum
by the Ritz method. As is easy to verify, Eq. (12') is
the Euler equation for the functional

20 ”S;j‘ K%% )2 + (;g) QﬁUz}deq;. (14)

In the Ritz method the values of I[U} are inves-
tigated not on arbitrary permissible curves of the
given variational problem, but only on the linear
combinations
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where gai!D =0{i=12,...,n) ga(;lD = &(P, P ap = 1;
D is the boundary of the region G; ak are constant
coefficients determined from the system of equations
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As shown in [7], the coefficients a; ... ap are
uniquely determined from system (15) if the coordi-
nate functions are linearly independent.

As ¢3(P, p) it is possible to take various combina-
tions of trigonometric functions or polynomials. For
example, for the first boundary value problem a
strongly minimal coordinate system in an infinite
strip on a two-dimensional plane can be written as
follows [7]:
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If ¢i(P, y) is selected in the form
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corresponding to m = 0 and satisfying the conditions
8¢1/8yl y=9 = 0, @jlp =0, then the expression for
determining [¢i, pj] (j = 0) takes the form
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NOTATION

v is the flow rate; P is the pressure; K is the
permeability factor; p is the coefficient of dynamic
viscosity; n is the flow-rate exponent; when n =0,
the flow obeys Darcy's law; when n = -1, the flow is
quadratic; T is the temperature; R is the gas constant;
v is the coolant density; Cp is the specific heat of the
gas at constant pressure or the gpecific heat of an
incompressible liquid; A is the thermal conductivity;
z,r, and ¢ are cylindrical coordinates; B, C;, and C,
are constants of integration; P; and T; are, respec-
tively, the pressure and temperature at surface of
body through which coolant is forced; P; and T, are,
respectively, the pressure and temperature at the
transpiration surface.
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